Identification of human remains using Rapid DNA analysis

44Citations
Citations of this article
142Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Rapid identification of human remains following mass casualty events is essential to bring closure to family members and friends of the victims. Unfortunately, disaster victim identification, missing persons identification, and forensic casework analysis are often complicated by sample degradation due to exposure to harsh environmental conditions. Following a mass disaster, forensic laboratories may be overwhelmed by the number of dissociated portions that require identification and reassociation or compromised by the event itself. The interval between the disaster and receipt of victim samples at a laboratory is critical in that sample quality deteriorates as the postmortem interval increases. When bodies decompose due to delay in collection, transport, and sample processing, DNA becomes progressively fragmented, adversely impacting identification. We have previously developed a fully automated, field-forward Rapid DNA identification system that produces STR profiles (also referred to as DNA IDs or DNA fingerprints) from buccal and crime scene samples. The system performs all sample processing and data interpretation in less than 2 h. Here, we present results on Rapid DNA identification performed on several tissue types (including buccal, muscle, liver, brain, tooth, and bone) from exposed human bodies placed above ground or stored in a morgue/cooler, two scenarios commonly encountered following mass disasters. We demonstrate that for exposed remains, buccal swabs are the sample of choice for up to 11 days exposure and bone and tooth samples generated excellent DNA IDs for the 1-year duration of the study. For refrigerated remains, all sample types generated excellent DNA IDs for the 3-month testing period.

Cite

CITATION STYLE

APA

Turingan, R. S., Brown, J., Kaplun, L., Smith, J., Watson, J., Boyd, D. A., … Selden, R. F. (2020). Identification of human remains using Rapid DNA analysis. International Journal of Legal Medicine, 134(3), 863–872. https://doi.org/10.1007/s00414-019-02186-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free