Inhalation of halogenated flame-retardants (HFRs) released from consumer products is an important route of exposure. However, not all airborne HFRs are respirable, and thus interact with vascular membranes within the gas exchange (alveolar) region of the lung. HFRs associated with large (>4 µm), inhalable airborne particulates are trapped on the mucosal lining of the respiratory tract and then are expelled or swallowed. The latter may contribute to internal exposure via desorption from particles in the digestive tract. Exposures may also be underestimated if personal activities that re-suspend particles into the breathing zone are not taken into account. Here, samples were collected using personal air samplers, clipped to the participants’ shirt collars (n = 18). We observed that the larger, inhalable air particulates carried the bulk (>92%) of HFRs. HFRs detected included those removed from commerce (i.e., polybrominated diphenyl ethers (Penta-BDEs: BDE-47, -85, -100, -99, and -153)), their replacements; e.g., 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (TBB or EH-TBB); bis(2-ethylhexyl) 3,4,5,6-tetrabromophthalate (TBPH or BEH-TEBP) and long-produced chlorinated organophosphate-FRs (ClOPFRs): tris(2-chloroethyl)phosphate (TCEP), tris(1-chloro-2-propyl)phosphate (TCPP or TCIPP), and tris(1,3-dichloro-2-propyl)phosphate (TDCPP or TDCIPP). Our findings suggest estimates relying on a single exposure route, i.e., alveolar gas exchange, may not accurately estimate HFR internal dosage, as they ignore contributions from larger inhalable particulates that enter the digestive tract. Consideration of the fate and bioavailability of these larger particulates resulted in higher dosage estimates for HFRs with log Koa < 12 (i.e., Penta-BDEs and ClOPFRs) and lower estimates for those with log Koa > 12 (i.e., TBB and TBPH) compared to the alveolar route exposure alone. Of those HFRs examined, the most significant effect was the lower estimate by 41% for TBPH. The bulk of TBPH uptake from inhaled particles was estimated to be through the digestive tract, with lower bioavailability. We compared inhalation exposure estimates to chronic oral reference doses (Rf Ds) established by several regulatory agencies. The U.S. Environmental Protection Agency (EPA) Rf D levels for several HFRs are considered outdated; however, BDE-99 levels exceeded those suggested by the Dutch National Institute for Public Health and the Environment (RIVM) by up to 26 times. These findings indicate that contributions and bioavailability of respirable and inhalable airborne particulates should both be considered in future risk assessments.
CITATION STYLE
La Guardia, M. J., Schreder, E. D., Uding, N., & Hale, R. C. (2017). Human indoor exposure to airborne halogenated flame retardants: Influence of airborne particle size. International Journal of Environmental Research and Public Health, 14(5). https://doi.org/10.3390/ijerph14050507
Mendeley helps you to discover research relevant for your work.