The continuous hexachordal theorem

4Citations
Citations of this article
2Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The Hexachordal Theorem may be interpreted in terms of scales, or rhythms, or as abstract mathematics. In terms of scales it claims that the complement of a chord that uses half the pitches of a scale is homometric to-i.e., has the same interval structure as-the original chord. In terms of onsets it claims that the complement of a rhythm with the same number of beats as rests is homometric to the original rhythm. We generalize the theorem in two directions: from points on a discrete circle (the mathematical model encompassing both scales and rhythms) to a continuous domain, and simultaneously from the discrete presence or absence of a pitch/onset to a continuous strength or weight of that pitch/onset. Athough this is a significant generalization of the Hexachordal Theorem, having all discrete versions as corollaries, our proof is arguably simpler than some that have appeared in the literature. We also establish the natural analog of what is sometimes known as Patterson's second theorem: if two equal-weight rhythms are homometric, so are their complements. © 2009 Springer Berlin Heidelberg.

Cite

CITATION STYLE

APA

Ballinger, B., Benbernou, N., Gomez, F., O’Rourke, J., & Toussaint, G. (2009). The continuous hexachordal theorem. In Communications in Computer and Information Science (Vol. 38, pp. 11–21). https://doi.org/10.1007/978-3-642-02394-1_2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free