Targeted protein degradation (TPD) through the autophagy pathway displays broad substrate scope and is gaining increasing interest in biology and medicine. However, current approaches using small-molecule degraders have limitations due to the lack of versatility, modularity, and ease of implementation and are restricted to addressing only ligandable proteins. Herein, we report a nonsmall molecule-based autophagy-targeting nanobody chimera (ATNC), or phagobody, for selective degradation of intracellular targets, which overcomes these limitations. The core of an ATNC features a nanobody for recruiting proteins as well as an autophagic pathway-directing module. ATNC turns out to be a general, modular, and versatile degradation platform. We show that ATNC can be versatilely implemented in different ways including expressed ATNC intrabodies for ease of use, chemically induced proximity (CIP)-operated logic-gated conditional and tunable degradation, and cyclic cell-penetrating peptide-tethered cell-permeable phagobodies that selectively degrade the undruggable therapeutically relevant HE4 protein, resulting in effective suppression of ovarian cancer cell proliferation and migration. Overall, ATNC represents a general, modular, and versatile targeted degradation platform that degrades unligandable proteins and offers therapeutic potential.
CITATION STYLE
He, H., Zhou, C., & Chen, X. (2023). ATNC: Versatile Nanobody Chimeras for Autophagic Degradation of Intracellular Unligandable and Undruggable Proteins. Journal of the American Chemical Society. https://doi.org/10.1021/jacs.3c08843
Mendeley helps you to discover research relevant for your work.