Diabetes is associated with impaired mobilization of bone marrow stem/progenitor cells that accelerate vascularization of ischemic areas. This study characterized mobilization of vascular reparative bone marrow progenitor cells in mouse models of diabetes. Age-matched control or streptozotocin (STZ)-induced diabetic, and db/db mice with lean-controls were studied. Mobilization induced by G-CSF, AMD3100 or ischemia was evaluated by flow cytometric enumeration of circulating Lin-Sca-1+cKit+ (LSK) cells, and by colony forming unit (CFU) assay. The circulating WBCs and LSKs, and CFUs were reduced in both models with a shorter duration (10-12 weeks) of diabetes compared to their respective controls. Longer duration of STZ-diabetes (≥20 weeks) induced impairment of G-CSF- or AMD3100-mobilization (P < 0.01, n = 8). In db/db mice, mobilization by G-CSF or AMD3100 was either increased or unaffected (P < 0.05, n = 6 to 8). Proliferation, migration, and ischemia-induced mobilization, of LSK cells were impaired in both models. Leptin receptor antagonist, PESLAN-1, increased G-CSF- or AMD3100-mobilization of WBCs and LSKs, compared to the untreated. Leptin increased basal WBCs, decreased basal and AMD3100-mobilized LSK cells, and had no effect on G-CSF. These results suggest that mobilopathy is apparent in STZ-diabetes but not in db/db mice. Leptin receptor antagonism would be a promising approach for reversing diabetic bone marrow mobilopathy.
CITATION STYLE
Vasam, G., Joshi, S., & Jarajapu, Y. P. R. (2016). Impaired Mobilization of Vascular Reparative Bone Marrow Cells in Streptozotocin-Induced Diabetes but not in Leptin Receptor-Deficient db/db Mice. Scientific Reports, 6. https://doi.org/10.1038/srep26131
Mendeley helps you to discover research relevant for your work.