The DREAM Endstation at the Linac Coherent Light Source

0Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

Free-electron lasers (FEL), with their ultrashort pulses, ultrahigh intensities, and high repetition rates at short wavelength, have provided new approaches to Atomic and Molecular Optical Science. One such approach is following the birth of a photo electron to observe ion dynamics on an ultrafast timescale. Such an approach presents the opportunity to decipher the photon-initiated structural dynamics of an isolated atomic and molecular species. It is a fundamental step towards understanding single- and non-linear multi-photon processes and coherent electron dynamics in atoms and molecules, ultimately leading to coherent control following FEL research breakthroughs in pulse shaping and polarization control. A key aspect for exploring photoinduced quantum phenomena is visualizing the collective motion of electrons and nuclei in a single reaction process, as dynamics in atoms/ions proceed at femtosecond (10 (Formula presented.) s) timescales while electronic dynamics take place in the attosecond timescale (10 (Formula presented.) s). Here, we report on the design of a Dynamic Reaction Microscope (DREAM) endstation located at the second interaction point of the Time-Resolved Molecular and Optical (TMO) instrument at the Linac Coherent Light Source (LCLS) capable of following the photon–matter interactions by detecting ions and electrons in coincidence. The DREAM endstation takes advantage of the pulse properties and high repetition rate of LCLS-II to perform gas-phase soft X-ray experiments in a wide spectrum of scientific domains. With its design ability to detect multi-ions and electrons in coincidence while operating in step with the high repetition rate of LCLS-II, the DREAM endstation takes advantage of the inherent momentum conservation of reaction product ions with participating electrons to reconstruct the original X-ray photon–matter interactions. In this report, we outline in detail the design of the DREAM endstation and its functionality, with scientific opportunities enabled by this state-of-the-art instrument.

Cite

CITATION STYLE

APA

Walter, P., Holmes, M., Obaid, R., Amores, L., Cheng, X., Cryan, J. P., … Osipov, T. (2022). The DREAM Endstation at the Linac Coherent Light Source. Applied Sciences (Switzerland), 12(20). https://doi.org/10.3390/app122010534

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free