Signaling by the BCR involves activation of several members of the Ras superfamily of small GTPases, among which is Ras itself. Ras can control the activity of multiple effectors, including Raf, PI3K, and guanine nucleotide exchange factors for the small GTPase Ral. Ras, Raf, and PI3K have been implicated in a variety of processes underlying B cell development, differentiation, and function; however, the role of Ral in B lymphocytes remains to be established. In this study, we show that Ral is activated upon BCR stimulation in human tonsillar and mouse splenic B lymphocytes and in B cell lines. Using signaling molecule-deficient B cells, we demonstrate that this activation is mediated by Lyn and Syk, Btk, phospholipase C-γ2, and inositol-1,4,5-trisphosphate receptor-mediated Ca2+ release. In addition, although Ral can be activated by Ras-independent mechanisms, we demonstrate that BCR-controlled activation of Ral is dependent on Ras. By means of expression of the dominant-negative mutants RasN17 and RalN28, or of RalBPΔGAP, a Ral effector mutant which sequesters active Ral, we show that Ras and Ral mediate BCR-controlled transcription of c-fos. Furthermore, while not involved in NF-κB activation, Ras and Ral mediate BCR-controlled activation of JUN/ATF2 and NFAT transcription factors. Taken together, our data show that Ral is activated upon BCR stimulation and mediates BCR-controlled activation of AP-1 and NFAT transcription factors. These findings suggest that Ral plays an important role in B cell development and function.
CITATION STYLE
de Gorter, D. J. J., Vos, J. C. M., Pals, S. T., & Spaargaren, M. (2007). The B Cell Antigen Receptor Controls AP-1 and NFAT Activity through Ras-Mediated Activation of Ral. The Journal of Immunology, 178(3), 1405–1414. https://doi.org/10.4049/jimmunol.178.3.1405
Mendeley helps you to discover research relevant for your work.