A mechanism used by cells to regulate their volume under hypo-osmotic conditions is the release of organic osmolytes, one of which is myo-inositol. The possibility that activation of phospholipase-C-linked receptors can regulate this process has been examined for SH-SY5Y neuroblastoma cells. Incubation of cells with hypo-osmolar buffers (160-250 mOsm) led to a biphasic release of inositol which persisted for up to 4 h and could be inhibited by inclusion of anion channel blockers - results which indicate the involvement of a volume-sensitive organic anion channel. Inclusion of oxotremorine-M, a muscarinic cholinergic agonist, resulted in a marked increase (80-100%) in inositol efflux under hypo-osmotic, but not isotonic, conditions. This enhanced release, which was observed under all conditions of hypo-osmolarity tested, could be prevented by inclusion of atropine. Incubation of the cells with either the calcium ionophore, ionomycin, or the phorbol ester, phorbol 12-myristate 13-acetate, partially mimicked the stimulatory effect of muscarinic receptor activation when added singly, and fully when added together. The ability of oxotremorine-M to facilitate inositol release was inhibited by removal of extracellular calcium, depletion of intracellular calcium or down-regulation of protein kinase C. These results indicate that activation of muscarinic cholinergic receptors can regulate osmolyte release in this cell line.
CITATION STYLE
Loveday, D., Heacock, A. M., & Fisher, S. K. (2003). Activation of muscarinic cholinergic receptors enhances the volume-sensitive efflux of myo-inositol from SH-SY5Y neuroblastoma cells. Journal of Neurochemistry, 87(2), 476–486. https://doi.org/10.1046/j.1471-4159.2003.02021.x
Mendeley helps you to discover research relevant for your work.