Automatic super-surface removal in complex 3d indoor environments using iterative region-based ransac

14Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Removing bounding surfaces such as walls, windows, curtains, and floor (i.e., super-surfaces) from a point cloud is a common task in a wide variety of computer vision applications (e.g., object recognition and human tracking). Popular plane segmentation methods such as Random Sample Consensus (RANSAC), are widely used to segment and remove surfaces from a point cloud. However, these estimators easily result in the incorrect association of foreground points to background bounding surfaces because of the stochasticity of randomly sampling, and the limited scene-specific knowledge used by these approaches. Additionally, identical approaches are generally used to detect bounding surfaces and surfaces that belong to foreground objects. Detecting and removing bounding surfaces in challenging (i.e., cluttered and dynamic) real-world scene can easily result in the erroneous removal of points belonging to desired foreground objects such as human bodies. To address these challenges, we introduce a novel super-surface removal technique for 3D complex indoor environments. Our method was developed to work with unorganized data captured from commercial depth sensors and supports varied sensor perspectives. We begin with preprocessing steps and dividing the input point cloud into four overlapped local regions. Then, we apply an iterative surface removal approach to all four regions to segment and remove the bounding surfaces. We evaluate the performance of our proposed method in terms of four conventional metrics: specificity, precision, recall, and F1 score, on three generated datasets representing different indoor environments. Our experimental results demonstrate that our proposed method is a robust super-surface removal and size reduction approach for complex 3D indoor environments while scoring the four evaluation metrics between 90% and 99%.

Cite

CITATION STYLE

APA

Ebrahimi, A., & Czarnuch, S. (2021). Automatic super-surface removal in complex 3d indoor environments using iterative region-based ransac. Sensors, 21(11). https://doi.org/10.3390/s21113724

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free