Carbon materials are generally preferred as anodes in supercapacitors; however, their low capacitance limits the attained energy density of supercapacitor devices with aqueous electrolytes. Here, we report a low-crystalline iron oxide hydroxide nanoparticle anode with comprehensive electrochemical performance at a wide potential window. The iron oxide hydroxide nanoparticles present capacitances of 1,066 and 716 F g-1 at mass loadings of 1.6 and 9.1 mg cm-2, respectively, a rate capability with 74.6% of capacitance retention at 30 A g-1, and cycling stability retaining 91% of capacitance after 10,000 cycles. The performance is attributed to a dominant capacitive charge-storage mechanism. An aqueous hybrid supercapacitor based on the iron oxide hydroxide anode shows stability during float voltage test for 450 h and an energy density of 104 Wh kg-1 at a power density of 1.27 kW kg-1. A packaged device delivers gravimetric and volumetric energy densities of 33.14 Wh kg-1 and 17.24 Wh l-1, respectively.
CITATION STYLE
Owusu, K. A., Qu, L., Li, J., Wang, Z., Zhao, K., Yang, C., … Mai, L. (2017). Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nature Communications, 8. https://doi.org/10.1038/ncomms14264
Mendeley helps you to discover research relevant for your work.