In gas drilling operations, the rate of penetration (ROP) parameter has an important influence on drilling costs. Prediction of ROP can optimize the drilling operational parameters and reduce its overall cost. To predict ROP with satisfactory precision, a stacked generalization ensemble model is developed in this paper. Drilling data were collected from a shale gas survey well in Xinjiang, northwestern China. First, Pearson correlation analysis is used for feature selection. Then, a Savitzky-Golay smoothing filter is used to reduce noise in the dataset. In the next stage, we propose a stacked generalization ensemble model that combines six machine learning models: support vector regression (SVR), extremely randomized trees (ET), random forest (RF), gradient boosting machine (GB), light gradient boosting machine (LightGBM) and extreme gradient boosting (XGB). The stacked model generates meta-data from the five models (SVR, ET, RF, GB, LightGBM) to compute ROP predictions using an XGB model. Then, the leave-one-out method is used to verify modeling performance. The performance of the stacked model is better than each single model, with R2 = 0.9568 and root mean square error = 0.4853 m/h achieved on the testing dataset. Hence, the proposed approach will be useful in optimizing gas drilling. Finally, the particle swarm optimization (PSO) algorithm is used to optimize the relevant ROP parameters.
CITATION STYLE
Liu, N., Gao, H., Zhao, Z., Hu, Y., & Duan, L. (2022). A stacked generalization ensemble model for optimization and prediction of the gas well rate of penetration: a case study in Xinjiang. Journal of Petroleum Exploration and Production Technology, 12(6), 1595–1608. https://doi.org/10.1007/s13202-021-01402-z
Mendeley helps you to discover research relevant for your work.