Precisely tuning the longitudinal localized surface plasmon resonance of gold nanorods: Via additive-regulated overgrowth

10Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

Gold nanorods (GNRs) with desired longitudinal localized surface plasmon resonance (LLSPR) and strong scattering intensity are important for extending their practical applications in bioimaging and sensing. Herein, a simple additive (HCl and Na2S)-regulated overgrowth approach has been proposed for preparing GNRs with tunable LLSPR. In this approach, HCl is used to slow down the growth reaction rate by changing chemical equilibrium, while Na2S is utilized to halt the reaction when LLSPR is reaching the expected wavelength under monitoring by a UV-Vis spectrometer. Under optimal conditions, GNRs with an LLSPR range from 850 to 650 nm could be facilely prepared with a high precision of 3 nm deviation. The TEM images reveal that GNRs have high monodispersity, displaying an increase in both length and diameter but a decrease in the aspect ratio. With the increase in size, the produced GNRs show enhanced scattering intensity and are applicable for single nanoparticle imaging due to the enlarged absorption and scattering cross-section and improved matching efficiency toward the CCD response.

Cite

CITATION STYLE

APA

Wang, S., Lin, Q., Xu, W., An, Q., Zhou, R., Yu, C. J., … Yuan, Z. (2020). Precisely tuning the longitudinal localized surface plasmon resonance of gold nanorods: Via additive-regulated overgrowth. RSC Advances, 10(21), 12619–12625. https://doi.org/10.1039/d0ra00579g

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free