The analysis of the behavior of soil and foundations when the piles in offshore areas are subjected to long-term lateral loading (wind) is one of the major problems associated with the smooth operation of superstructure. The strength of the pile-soil system is influenced by variations in the water content of the soil. At present, there are no studies carried out analyzing the mechanical and deformational behavior of both the material of the laterally loaded piles and soil with groundwater level as a variable. In this paper, a series of 1-g model tests were conducted to explore the lateral behavior of both soil and monopile under unidirectional cyclic loading, based on the foundation of an offshore wind turbine near the island. The influence of underground water level and cyclic load magnitude on the performance of the pile–soil system was analyzed. To visualize the movements of soil particles during the experimental process, particle image velocimetry (PIV) was used to record the soil displacement field under various cyclic loading conditions. The relationship curves between pile top displacement and cyclic steps, as well as the relationship curves between cyclic stiffness and cyclic steps, were displayed. Combined with fractal theory, the fractal dimension of each curve was calculated to evaluate the sensitivity of the pile–soil interaction system. The results showed that cyclic loading conditions and groundwater depth are the main factors affecting the pile–soil interaction. The cyclic stiffness of the soil increased in all test groups as loading progressed; however, an increase in the cyclic load magnitude decreased the initial and cyclic stiffness. The initial and cyclic stiffness of dry soil was higher than that of saturated soil, but less than that of unsaturated soil. The ability of the unsaturated soil to limit the lateral displacement of the pile decreased as the depth of the groundwater level dropped. The greater the fluctuation of the pile top displacement, the larger the fractal dimension of each relationship curve, with a variation interval of roughly 1.24–1.38. The average increment of the cumulative pile top displacement between each cycle step following the cyclic loading was positively correlated with fractal dimension. Based on the PIV results, the changes in the pile–soil system were predominantly focused in the early stages of the experiment, and the short-term effects of lateral cyclic loading are greater than the long-term effects. In addition, this research was limited to a single soil layer. The pile–soil interaction under layered soil is investigated, and the results will be used in more complex ground conditions in the future.
CITATION STYLE
Yuan, B., Li, Z., Chen, W., Zhao, J., Lv, J., Song, J., & Cao, X. (2022). Influence of Groundwater Depth on Pile–Soil Mechanical Properties and Fractal Characteristics under Cyclic Loading. Fractal and Fractional, 6(4). https://doi.org/10.3390/fractalfract6040198
Mendeley helps you to discover research relevant for your work.