Tight junctions (TJs) are dynamic cellular structures that are critical for compartmentalizing environments within tissues and regulating transport of small molecules, ions, and fluids. Phosphorylation-dependent binding of the transmembrane protein occludin to the structural organizing protein ZO-1 contributes to the regulation of barrier properties; however, the details of their interaction are controversial. Using small angle X-ray scattering (SAXS), NMR chemical shift perturbation, cross-saturation, in vitro binding, and site-directed mutagenesis experiments. we define the interface between the ZO-1 PDZ3-SH3-U5-GuK (PSG) and occludin coiled-coil (CC) domains. The interface is comprised of basic residues in PSG and an acidic region in CC. Complex formation is blocked by a peptide (REESEEYM) that corresponds to CC residues 468-475 and includes a previously uncharacterized phosphosite, with the phosphorylated version having a larger effect. Furthermore, mutation of E470 and E472 reduces cell border localization of occludin. Together, these results localize the interaction to an acidic region in CC and a predominantly basic helix V within the ZO-1 GuK domain. This model has important implications for the phosphorylation-dependent regulation of the occludin:ZO-1 complex.
CITATION STYLE
Tash, B. R., Bewley, M. C., Russo, M., Keil, J. M., Griffin, K. A., Sundstrom, J. M., … Flanagan, J. M. (2012). The occludin and ZO-1 complex, defined by small angle X-ray scattering and NMR, has implications for modulating tight junction permeability. Proceedings of the National Academy of Sciences of the United States of America, 109(27), 10855–10860. https://doi.org/10.1073/pnas.1121390109
Mendeley helps you to discover research relevant for your work.