With the popularity and promotion of electric vehicles (EVs), virtual power plants (VPPs) provide a new means for the orderly charging management of decentralized EVs. How to set the price of electricity sales for VPP operators to achieve a win–win situation with EV users is a hot topic of current research. Based on this, this paper first proposes a Stackelberg game model in which the VPP participates in the orderly charging management of EVs as a power sales operator, where the operator guides the EV users to charge in an orderly manner by setting a reasonable power sales price and coordinates various distributed resources to jointly participate in the power market. Furthermore, taking into account the impact of wind power output uncertainty on VPP operation, a robust optimization method is used to extend the deterministic Stackelberg game pricing model into a robust optimization model, and a robust adjustment factor is introduced to flexibly adjust the conservativeness of the VPP operator’s bidding scheme in the energy market. The model is then transformed into a robust mixed-integer linear programming (RMILP) problem solved by Karush–Kuhn–Tucker (KKT) conditions and strong dyadic theory. Finally, the effectiveness of the solution method is verified in the calculation example, which gives the optimal pricing strategy for the VPP operator, the optimal charging scheme for EV users, and the remaining internal resources’ contribution plan, providing an important idea for the VPP to centrally manage the charging behavior of EVs and improve its own operating revenue.
CITATION STYLE
Liu, Q., Tian, J., Zhang, K., & Yan, Q. (2023). Pricing Strategy for a Virtual Power Plant Operator with Electric Vehicle Users Based on the Stackelberg Game. World Electric Vehicle Journal, 14(3). https://doi.org/10.3390/wevj14030072
Mendeley helps you to discover research relevant for your work.