Piezoelectric transducers are convenient enablers for generating and receiving Lamb waves for damage detection. Fatigue cracks are one of the most common causes for the failure of metallic structures. Increasing emphasis on the integrity of critical structures creates an urgent need to monitor structures and to detect cracks at an early stage to prevent catastrophic failures. This paper presents a two-dimensional (2D) cross-correlation imaging technique that can not only detect a fatigue crack but can also precisely image the fatigue cracks in metallic structures. The imaging method was based on the cross-correlation algorithm that uses incident waves and the crack-scattered waves of all directions to generate the crack image. Fatigue testing for crack generation was then conducted in both an aluminum plate and a stainless-steel plate. Piezoelectric wafer transducer was used to actuate the interrogating Lamb wave. To obtain the scattered waves as well as the incident waves, a scanning laser Doppler vibrometer was adopted for acquiring time-space multidimensional wavefield, followed with frequency-wavenumber processing. The proof-of-concept study was conducted in an aluminum plate with a hairline fatigue crack. A frequency-wavenumber filtering method was used to obtain the incident wave and the scattered wave wavefields for the cross-correlation imaging. After this, the imaging method was applied to evaluate cracks on a stainless-steel plate generated during fatigue loading tests. The presented imaging method showed successful inspection and quantification results of the crack and its growth.
CITATION STYLE
Xiao, W., Yu, L., Joseph, R., & Giurgiutiu, V. (2020). Fatigue-crack detection and monitoring through the scattered-wave two-dimensional cross-correlation imaging method using piezoelectric transducers. Sensors (Switzerland), 20(11). https://doi.org/10.3390/s20113035
Mendeley helps you to discover research relevant for your work.