A Barrier to Entry: Examining the Bacterial Outer Membrane and Antibiotic Resistance

18Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.

Abstract

Gram-negative bacteria can resist antibiotics by changing the permeability via their outer membrane. These bacteria have a complex cell envelope that incorporates an outer membrane separating the periplasm from the external environment. This outer membrane contains many protein channels, also known as porins or nanopores, which mainly allow the influx of hydrophilic compounds, including antibiotics. One probable way bacteria may possibly develop antibiotic resistance is by reworking to reduce the inflow through these outer membrane porins or nanopores. The challenge now is to recognize and potentially comprehend the molecular basis of permeability via the bacterial outer membrane. To address this challenge, this assessment builds upon the author’s previous work to develop a comprehensive understanding of membrane porins and their crucial role in the influx of antibiotics and solutes. Furthermore, the work aspires to investigate the bacterial response to antibiotic membrane permeability and nurture discussion toward further exploration of the physicochemical parameters governing the translocation/transport of antibiotics through bacterial membrane porins. By augmenting our understanding of these mechanisms, we may devise novel approaches to mitigate antibiotic resistance in Gram-negative bacteria.

Cite

CITATION STYLE

APA

Ghai, I. (2023, April 1). A Barrier to Entry: Examining the Bacterial Outer Membrane and Antibiotic Resistance. Applied Sciences (Switzerland). MDPI. https://doi.org/10.3390/app13074238

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free