Enzyme immobilization and mediation with Osmium redox polymers

11Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Enzymatic electrodes are becoming increasingly common for energy production and sensing applications. Research over the past several decades has addressed a major issue that can occur when using these biocatalysts, i.e., slow heterogeneous electron transfer, by incorporation of a redox active species to act as an electron shuttle. There are several advantages to immobilizing both the enzyme and mediator at the enzyme surface, including increased electron transfer rates, decreased enzyme leaching, and minimized diffusion limitations. Redox polymers consisting of a redox active center attached to a polymer backbone are a particularly attractive option because they have high self-exchange rates for electron transfer and tunable redox potential. Osmium (Os) polymers are the most well studied of this type of polymer for bioelectrocatalysis. Here, we describe the methods to synthesize one of the most common Os redox polymers and how it can be used to fabricate glucose oxidase electrodes. Procedures are also outlined for evaluating the enzymatic electrodes.

Cite

CITATION STYLE

APA

Vandezand, G. R., Olvany, J. M., Rutherford, J. L., & Rasmussen, M. (2017). Enzyme immobilization and mediation with Osmium redox polymers. In Methods in Molecular Biology (Vol. 1504, pp. 165–179). Humana Press Inc. https://doi.org/10.1007/978-1-4939-6499-4_13

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free