Excessive amounts of reactive oxygen species (ROS) induced by ultraviolet (UV) radiation cause skin aging via basement membrane/extracellular matrix degradation resulting from the action of matrix metalloproteinases (MMPs). Recently, phloroglucinol (1,3,5-trihydroxybenzene) was demonstrated to attenuate the cell damage induced by oxidative stress by quenching ROS and stimulating antioxidant systems. In the current study, the effect of phloroglucinol on UVB-induced photoaging was investigated in human HaCaT keratinocytes. Phloroglucinol significantly inhibited the UVB-induced (1) upregulation of MMP-1 mRNA, protein and activity; (2) augmentation of intracellular Ca 2+ levels; (3) phosphorylation of mitogen-activated protein kinases (MAPKs); (4) expression of c-Fos and phospho c-Jun; and (5) enhancement of activator protein-1 (AP-1) binding to the MMP-1 promoter. In addition, the knockdown of MAPKs significantly inhibited UVB-induced MMP-1 expression. The results of this study suggest that phloroglucinol may be useful as a photoprotective compound for the skin. © 2012 The American Society of Photobiology.
CITATION STYLE
Piao, M. J., Zhang, R., Lee, N. H., & Hyun, J. W. (2012). Phloroglucinol attenuates ultraviolet B radiation-induced matrix metalloproteinase-1 production in human keratinocytes via inhibitory actions against mitogen-activated protein kinases and activator protein-1. Photochemistry and Photobiology, 88(2), 381–388. https://doi.org/10.1111/j.1751-1097.2012.01074.x
Mendeley helps you to discover research relevant for your work.