People with lower limb impairment can participate in activities such as running with the use of a passive-dynamic ankle-foot orthosis (PD-AFO). Specifically, the Intrepid Dynamic Exoskeletal Orthosis (IDEO) is a PD-AFO design that includes a carbon-fiber strut, which attaches posteriorly to a custom-fabricated tibial cuff and foot plate and acts in parallel with the impaired biological ankle joint to control sagittal and mediolateral motion, while allowing elastic energy storage and return during the stance phase of running. The strut stiffness affects the extent to which the orthosis keeps the impaired biological ankle in a neutral position by controling sagittal and mediolateral motion. The struts are currently manufactured to a thickness that corresponds with one of five stiffness categories (1 = least stiff, 5 = most stiff) and are prescribed to patients based on their body mass and activity level. However, the stiffness values of IDEO carbon-fiber struts have not been systematically determined, and these values can inform dynamic function and biomimetic PD-AFO prescription and design. The PD-AFO strut primarily deflects in the anterior direction (ankle dorsiflexion), and resists deflection in the posterior direction (ankle plantarflexion) during the stance phase of running. Thus, we constructed a custom apparatus and measured strut stiffness for 0.18 radians (10°) of anterior deflection and 0.09 radians (5°) of posterior deflection. We measured the applied moment and strut deflection to compute angular stiffness, the quotient of moment and angle. The strut moment-angle curves for anterior and posterior deflection were well characterized by a linear relationship. The strut stiffness values for categories 1–5 at 0.18 radians (10°) of anterior deflection were 0.73–1.74 kN·m/rad and at 0.09 radians (5°) of posterior deflection were 0.86–2.73 kN·m/rad. Since a PD-AFO strut acts in parallel with the impaired biological ankle, the strut and impaired biological ankle angular stiffness sum to equal total stiffness. Thus, strut stiffness directly affects total ankle joint stiffness, which in turn affects ankle motion and energy storage and return during running. Future research is planned to better understand how use of a running-specific PD-AFO with different strut stiffness affects the biomechanics and metabolic costs of running in people with lower limb impairment.
CITATION STYLE
Ashcraft, K. R., & Grabowski, A. M. (2022). Characterizing the Mechanical Stiffness of Passive-Dynamic Ankle-Foot Orthosis Struts. Frontiers in Rehabilitation Sciences, 3. https://doi.org/10.3389/fresc.2022.820285
Mendeley helps you to discover research relevant for your work.