Pathways on demand: Automated reconstruction of human signaling networks

50Citations
Citations of this article
100Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Signaling pathways are a cornerstone of systems biology. Several databases store high-quality representations of these pathways that are amenable for automated analyses. Despite painstaking and manual curation, these databases remain incomplete. We present PATHLINKER, a new computational method to reconstruct the interactions in a signaling pathway of interest. PATHLINKER efficiently computes multiple short paths from the receptors to transcriptional regulators (TRs) in a pathway within a background protein interaction network. We use PATHLINKER to accurately reconstruct a comprehensive set of signaling pathways from the NetPath and KEGG databases. We show that PATHLINKER has higher precision and recall than several state-of-the-art algorithms, while also ensuring that the resulting network connects receptor proteins to TRs. PATHLINKER’s reconstruction of the Wnt pathway identified CFTR, an ABC class chloride ion channel transporter, as a novel intermediary that facilitates the signaling of Ryk to Dab2, which are known components of Wnt/β-catenin signaling. In HEK293 cells, we show that the Ryk–CFTR–Dab2 path is a novel amplifier of β-catenin signaling specifically in response to Wnt 1, 2, 3, and 3a of the 11 Wnts tested. PATHLINKER captures the structure of signaling pathways as represented in pathway databases better than existing methods. PATHLINKER’s success in reconstructing pathways from NetPath and KEGG databases point to its applicability for complementing manual curation of these databases. PATHLINKER may serve as a promising approach for prioritizing proteins and interactions for experimental study, as illustrated by its discovery of a novel pathway in Wnt/β-catenin signaling. Our supplementary website at http://bioinformatics.cs.vt.edu/~murali/supplements/2016-sysbio-applications-pathlinker/ provides links to the PATHLINKER software, input datasets, PATHLINKER reconstructions of NetPath pathways, and links to interactive visualizations of these reconstructions on GraphSpace.

Cite

CITATION STYLE

APA

Ritz, A., Poirel, C. L., Tegge, A. N., Sharp, N., Simmons, K., Powell, A., … Murali, T. M. (2016). Pathways on demand: Automated reconstruction of human signaling networks. Npj Systems Biology and Applications, 2. https://doi.org/10.1038/npjsba.2016.2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free