Evolutionary replicative data reorganization with prioritization for efficient workload processing

0Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

Nowadays the importance of data collection, processing, and analyzing is growing tremendously. Big Data technologies are in high demand in different areas, including bio-informatics, hydrometeorology, high energy physics, etc. One of the most popular computation paradigms that is used in large data processing frameworks is the MapReduce programming model. Today integrated optimization mechanisms that take into account only load balance and execution fast simplicity are not enough for advanced computations and more efficient complex approaches are needed. In this paper, we suggest an improved algorithm based on categorization for data reorganization in MapReduce frameworks using replication and network aspects. Moreover, for urgent computations that require a specific approach, the prioritization customization is introduced.

Cite

CITATION STYLE

APA

Spivak, A., Razumovskiy, A., Myagkov, A., & Nasonov, D. (2015). Evolutionary replicative data reorganization with prioritization for efficient workload processing. In Procedia Computer Science (Vol. 51, pp. 2357–2366). Elsevier B.V. https://doi.org/10.1016/j.procs.2015.05.405

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free