Exact solution of the van der Waals model in the critical region

Citations of this article
Mendeley users who have this article in their library.


The celebrated van der Waals model describes simple fluids in the thermodynamic limit and predicts the existence of a critical point associated to the gas-liquid phase transition. However the behavior of critical isotherms according to the equation of state, where a gas-liquid phase transition occurs, significantly departs from experimental observations. The correct critical isotherms are heuristically re-established via the Maxwell equal areas rule. A long standing open problem in mean field theory is concerned with the analytic description of van der Waals isotherms for a finite size system that is consistent, in the thermodynamic limit, with the Maxwell prescription. Inspired by the theory of nonlinear conservation laws, we propose a novel mean field approach, based on statistical mechanics, that allows to calculate the van der Waals partition function for a system of large but finite number of particles N. Our partition function naturally extends to the whole space of thermodynamic variables, reproduces, in the thermodynamic limit N→. ∞, the classical results outside the critical region and automatically encodes Maxwell's prescription. We show that isothermal curves evolve in the space of thermodynamic variables like nonlinear breaking waves and the criticality is explained as the mechanism of formation of a classical hydrodynamic shock.




Barra, A., & Moro, A. (2015). Exact solution of the van der Waals model in the critical region. Annals of Physics, 359, 290–299. https://doi.org/10.1016/j.aop.2015.04.032

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free