Experimental supercritical CO2 and water interactions with coal under simulated in situ conditions

25Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Geological storage of CO2 is a key component of emission reduction strategies. Options for geosequestration include injecting CO 2 into oil and gas fields (producing or depleted), deep saline formations and coal seams. We have investigated injection of CO2 into coal using static batch experiments conducted under temperature and pressure conditions similar to the in situ formation conditions for the coal samples. Within a custom built batch reactor, sister sample coal cubes (15 mm) were immersed first in water only, and then a mixture of supercritical CO2 and water (sCO2-H2O). The sCO2-H2O experiment fluid chemistry indicates significant mobilisation of metals due to dissolution of cleat and matrix mineral matter, as well as displacement of ion exchangeable metals. Minor minerals within coal can be major constituents within the reaction fluids analysed. SEM images have provided evidence of the dissolution of both cleat and matrix minerals, as well as coal swelling and contraction induced by CO2 adsorption and desorption, respectively. © 2011 Published by Elsevier Ltd.

Cite

CITATION STYLE

APA

Dawson, G. K. W., Golding, S. D., Massarotto, P., & Esterle, J. S. (2011). Experimental supercritical CO2 and water interactions with coal under simulated in situ conditions. In Energy Procedia (Vol. 4, pp. 3139–3146). Elsevier Ltd. https://doi.org/10.1016/j.egypro.2011.02.228

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free