Blocking Gi/o-Coupled Signaling Eradicates Cancer Stem Cells and Sensitizes Breast Tumors to HER2-Targeted Therapies to Inhibit Tumor Relapse

2Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Cancer stem cells (CSCs) are a small subpopulation of cells within tumors that are resistant to anti-tumor therapies, making them a likely origin of tumor relapse after treatment. In many cancers including breast cancer, CSC function is regulated by G protein-coupled receptors (GPCRs), making GPCR signaling an attractive target for new therapies designed to eradicate CSCs. Yet, CSCs overexpress multiple GPCRs that are redundant in maintaining CSC function, so it is unclear how to target all the various GPCRs to prevent relapse. Here, in a model of HER2+ breast cancer (i.e., transgenic MMTV-Neu mice), we were able to block the tumorsphere-and tumor-forming capabil-ity of CSCs by targeting GPCRs coupled to Gi/o proteins (Gi/o-GPCRs). Similarly, in HER2+ breast cancer cells, blocking signaling downstream of Gi/o-GPCRs in the PI3K/AKT and Src pathways also enhanced HER2-targeted elimination of CSCs. In a proof-of-concept study, when CSCs were selectively ablated (via a suicide gene construct), loss of CSCs from HER2+ breast cancer cell populations mimicked the effect of targeting Gi/o-GPCR signaling, suppressing their capacity for tumor initia-tion and progression and enhancing HER2-targeted therapy. Thus, targeting Gi/o-GPCR signaling in HER2+ breast cancer is a promising approach for eradicating CSCs, enhancing HER2+ targeted therapy and blocking tumor reemergence.

Cite

CITATION STYLE

APA

Lyu, C., Ye, Y., Weigel, R. J., & Chen, S. (2022). Blocking Gi/o-Coupled Signaling Eradicates Cancer Stem Cells and Sensitizes Breast Tumors to HER2-Targeted Therapies to Inhibit Tumor Relapse. Cancers, 14(7). https://doi.org/10.3390/cancers14071719

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free