Integration Methods for Molecular Dynamics

  • Leimkuhler B
  • Reich S
  • Skeel R
N/ACitations
Citations of this article
104Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Classical molecular dynamics simulation of a macromolecule requires the use of an efficient time-stepping scheme that can faithfully approximate the dynamics over many thousands of timesteps. Because these problems are highly nonlinear, accurate approximation of a particular solution trajectory on meaningful time intervals is neither obtainable nor desired, but some restrictions, such as symplecticness, can be imposed on the discretization which tend to imply good long term behavior. The presence of a variety of types and strengths of interatom potentials in standard molecular models places severe restrictions on the timestep for numerical integration used in explicit integration schemes, so much recent research has concentrated on the search for alternatives that possess (1) proper dynamical properties, and (2) a relative insensitivity to the fastest components of the dynamics. We survey several recent approaches.

Cite

CITATION STYLE

APA

Leimkuhler, B. J., Reich, S., & Skeel, R. D. (1996). Integration Methods for Molecular Dynamics (pp. 161–185). https://doi.org/10.1007/978-1-4612-4066-2_10

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free