Spin-dependent effects in organic solar cells (OSCs) are responsible for tuning the electric current when an external magnetic field is applied. Here, we report the magnetic field effect (MFE) on wide-bandgap (WBG) solar cells based on the polymers PBDT(O)-T1 and PBDT(Se)-T1 blended with PC70BM. Furthermore, we propose an experimental method based on the electrical transport (i-V) measurements to unveil the negative magneto conductance (MC) at small bias. The observed curves in a double-logarithmic scale display a particular S-like shape, independent of the OSC power conversion efficiency (PCE) or MC amplitudes. Additionally, from the slope of the S-like shape curve, it is possible to identify the fullerene concentrations that would result in the minimum MC and the maximum PCE. Our work opens up a door to find more patterns to describe MFE and PCE in polymer-fullerene solar cells, without the application of external magnetic or luminous sources.
CITATION STYLE
Cabero Zabalaga, M. A., Wei, J., Yang, H., Fan, B. B., Sun, Y., & Zhao, W. (2017). Unraveling the Characteristic Shape for Magnetic Field Effects in Polymer-Fullerene Solar Cells. ACS Omega, 2(11), 7777–7783. https://doi.org/10.1021/acsomega.7b01470
Mendeley helps you to discover research relevant for your work.