An ensembled anomaly detector for wafer fault detection

4Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

The production process of a wafer in the semiconductor industry consists of several phases such as a diffusion and associated defectivity test, parametric test, electrical wafer sort test, assembly and associated defectivity tests, final test, and burn-in. Among these, the fault detection phase is critical to maintain the low number and the impact of anomalies that eventually result in a yield loss. The understanding and discovery of the causes of yield detractors is a complex procedure of root-cause analysis. Many parameters are tracked for fault detection, including pressure, voltage, power, or valve status. In the majority of the cases, a fault is due to a combination of two or more parameters, whose values apparently stay within the designed and checked control limits. In this work, we propose an ensembled anomaly detector which combines together univariate and multivariate analyses of the fault detection tracked parameters. The ensemble is based on three proposed and compared balancing strategies. The experimental phase is conducted on two real datasets that have been gathered in the semiconductor industry and made publicly available. The experimental validation, also conducted to compare our proposal with other traditional anomaly detection techniques, is promising in detecting anomalies retaining high recall with a low number of false alarms.

Cite

CITATION STYLE

APA

Furnari, G., Vattiato, F., Allegra, D., Milotta, F. L. M., Orofino, A., Rizzo, R., … Stanco, F. (2021). An ensembled anomaly detector for wafer fault detection. Sensors, 21(16). https://doi.org/10.3390/s21165465

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free