We present a new regression algorithm called Groves of trees and show empirically that it is superior in performance to a number of other established regression methods. A Grove is an additive model usually containing a small number of large trees. Trees added to the Grove are trained on the residual error of other trees already in the Grove. We begin the training process with a single small tree in the Grove and gradually increase both the number of trees in the Grove and their size. This procedure ensures that the resulting model captures the additive structure of the response. A single Grove may still overfit to the training set, so we further decrease the variance of the final predictions with bagging. We show that in addition to exhibiting superior performance on a suite of regression test problems, bagged Groves of trees are very resistant to overfitting. © Springer-Verlag Berlin Heidelberg 2007.
CITATION STYLE
Sorokina, D., Caruana, R., & Riedewald, M. (2007). Additive groves of regression trees. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 4701 LNAI, pp. 323–334). Springer Verlag. https://doi.org/10.1007/978-3-540-74958-5_31
Mendeley helps you to discover research relevant for your work.