An inhibitory circuit from central amygdala to zona incerta drives pain-related behaviors in mice

13Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Central amygdala neurons expressing protein kinase C-delta (CeA-PKCδ) are sensitized following nerve injury and promote pain-related responses in mice. The neural circuits underlying modulation of pain-related behaviors by CeA-PKCδ neurons, however, remain unknown. In this study, we identified a neural circuit that originates in CeA-PKCδ neurons and terminates in the ventral region of the zona incerta (ZI), a subthalamic structure previously linked to pain processing. Behavioral experiments show that chemogenetic inhibition of GABAergic ZI neurons induced bilateral hypersensitivity in uninjured mice and contralateral hypersensitivity after nerve injury. In contrast, chemogenetic activation of GABAergic ZI neurons reversed nerve injury-induced hyper-sensitivity. Optogenetic manipulations of CeA-PKCδ axonal terminals in the ZI further showed that inhibition of this pathway reduces nerve injury-induced hypersensitivity whereas activation of the pathway produces hypersensitivity in the uninjured paws. Altogether, our results identify a novel nociceptive inhibitory efferent pathway from CeA-PKCδ neurons to the ZI that bidirectionally modulates pain-related behaviors in mice.

Cite

CITATION STYLE

APA

Singh, S., Wilson, T. D., Valdivia, S., Benowitz, B., Chaudhry, S., Ma, J., … Carrasquillo, Y. (2022). An inhibitory circuit from central amygdala to zona incerta drives pain-related behaviors in mice. ELife, 11. https://doi.org/10.7554/eLife.68760

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free