Incongruences between nuclear and plastid phylogenies challenge the identification of correlates of diversification in Gentiana in the European Alpine System

11Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Mountains are reservoirs for a tremendous biodiversity which was fostered by a suite of factors acting in concert throughout evolutionary times. These factors can be climatic, geological, or biotic, but the way they combine through time to generate diversity remains unknown. Here, we investigate these factors as correlates of diversification of three closely related sections of Gentiana in the European Alpine System. Based upon phylogenetic approaches coupled with divergence dating and ancestral state reconstructions, we attempted to identify the role of bedrock preferences, chromosome numbers coupled with relative genome sizes estimates, as well as morphological features through time. We also investigated extant climatic preferences using a heavily curated set of occurrence records individually selected for superior precision, and quantified rates of climatic niche evolution in each section. We found that a number of phylogenetic incongruences derail the identification of correlates of diversification, yet a number of patterns persist regardless of the topology considered. All the studied correlates are likely to have contributed to the diversification of Gentiana in Europe, however, their respective importance varied through time and across clades. Chromosomal variation and divergence of climatic preferences appear to correlate with diversification throughout the evolution of European Gentiana (Oligocene to present), whereas shifts in bedrock preferences appear to have been more defining during recent diversification (Pliocene). Overall, a complex interaction among climatic, geological and biotic attributes appear to have supported the diversification of Gentiana across the mountains of Europe, which based upon phylogenetic as well as other evidence, was probably also bolstered by hybridization.

Cite

CITATION STYLE

APA

Favre, A., Paule, J., & Ebersbach, J. (2022). Incongruences between nuclear and plastid phylogenies challenge the identification of correlates of diversification in Gentiana in the European Alpine System. Alpine Botany, 132(1), 29–50. https://doi.org/10.1007/s00035-021-00267-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free