Two drift-diffusion models for the quantum transport of electrons in graphene, which account for the spin degree of freedom, are derived from a spinorial Wigner equation with relaxation-time or mass- and spin-conserving matrix collision operators using a Chapman-Enskog expansion around the thermal equilibrium. Explicit models are computed by assuming that both the semiclassical parameter and the scaled Fermi energy are sufficiently small. For one of the models, the global existence of weak solutions, entropy-dissipation properties, and the exponential long-time decay of the spin vector are proved. Finally, numerical simulations of a one-dimensional ballistic diode using both models are presented, showing the temporal behavior of the particle density and the components of the spin vector. © 2013 International Press.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Zamponi, N., & Jüngel, A. (2013). Two spinorial drift-diffusion models for quantum electron transport in graphene. Communications in Mathematical Sciences, 11(3), 807–830. https://doi.org/10.4310/CMS.2013.v11.n3.a7