Utilizing Co2+/Co3+ Redox Couple in P2-Layered Na0.66Co0.22Mn0.44Ti0.34O2 Cathode for Sodium-Ion Batteries

93Citations
Citations of this article
46Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Developing sodium-ion batteries for large-scale energy storage applications is facing big challenges of the lack of high-performance cathode materials. Here, a series of new cathode materials Na0.66CoxMn0.66–xTi0.34O2 for sodium-ion batteries are designed and synthesized aiming to reduce transition metal-ion ordering, charge ordering, as well as Na+ and vacancy ordering. An interesting structure change of Na0.66CoxMn0.66–xTi0.34O2 from orthorhombic to hexagonal is revealed when Co content increases from x = 0 to 0.33. In particular, Na0.66Co0.22Mn0.44Ti0.34O2 with a P2-type layered structure delivers a reversible capacity of 120 mAh g−1 at 0.1 C. When the current density increases to 10 C, a reversible capacity of 63.2 mAh g−1 can still be obtained, indicating a promising rate capability. The low valence Co2+ substitution results in the formation of average Mn3.7+ valence state in Na0.66Co0.22Mn0.44Ti0.34O2, effectively suppressing the Mn3+-induced Jahn–Teller distortion, and in turn stabilizing the layered structure. X-ray absorption spectroscopy results suggest that the charge compensation of Na0.66Co0.22Mn0.44Ti0.34O2 during charge/discharge is contributed by Co2.2+/Co3+ and Mn3.3+/Mn4+ redox couples. This is the first time that the highly reversible Co2+/Co3+ redox couple is observed in P2-layered cathodes for sodium-ion batteries. This finding may open new approaches to design advanced intercalation-type cathode materials.

Cite

CITATION STYLE

APA

Wang, Q. C., Hu, E., Pan, Y., Xiao, N., Hong, F., Fu, Z. W., … Zhou, Y. N. (2017). Utilizing Co2+/Co3+ Redox Couple in P2-Layered Na0.66Co0.22Mn0.44Ti0.34O2 Cathode for Sodium-Ion Batteries. Advanced Science, 4(11). https://doi.org/10.1002/advs.201700219

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free