Universal bound on sampling bosons in linear optics and its computational implications

16Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In linear optics, photons are scattered in a network through passive optical elements including beam splitters and phase shifters, leading to many intriguing applications in physics, such as Mach-Zehnder interferometry, the Hong-Ou-Mandel effect, and tests of fundamental quantum mechanics. Here we present the fundamental limit in the transition amplitudes of bosons, applicable to all physical linear optical networks. Apart from boson sampling, this transition bound results in many other interesting applications, including behaviors of Bose-Einstein condensates (BEC) in optical networks, counterparts of Hong-Ou-Mandel effects for multiple photons, and approximating permanents of matrices. In addition, this general bound implies the existence of a polynomial-time randomized algorithm for estimating the transition amplitudes of bosons, which represents a solution to an open problem raised by Aaronson and Hance (Quantum Inf Comput 2012; 14: 541-59). Consequently, this bound implies that computational decision problems encoded in linear optics, prepared and detected in the Fock basis, can be solved efficiently by classical computers within additive errors. Furthermore, our result also leads to a classical sampling algorithm that can be applied to calculate the many-body wave functions and the S-matrix of bosonic particles.

Cite

CITATION STYLE

APA

Yung, M. H., Gao, X., & Huh, J. (2019). Universal bound on sampling bosons in linear optics and its computational implications. National Science Review, 6(4), 719–729. https://doi.org/10.1093/nsr/nwz048

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free