Ralstonia solanacearum promotes pathogenicity by utilizing l-glutamic acid from host plants

40Citations
Citations of this article
50Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Ralstonia solanacearum is an important bacterial pathogen that can infect a broad range of plants worldwide. A previous study showed that R. solanacearum could respond to exogenous organic acids or amino acids to modulate cell motility. However, it was unclear whether R. solanacearum uses these compounds to control infection. In this study, we found that R. solanacearum GMI1000 uses host plant metabolites to enhance the biosynthesis of virulence factors. We demonstrated that l-glutamic acid from host plants is the key active component associated with increased extracellular polysaccharide production, cellulase activity, swimming motility, and biofilm formation in R. solanacearum GMI1000. In addition, l-glutamic acid also promoted colonization of R. solanacearum cells in the roots and stems of tomato plants and accelerated disease incidence. Furthermore, genetic screening and biochemical analysis suggested that RS01577, a hybrid sensor histidine kinase/response regulator, is involved in l-glutamic acid signalling in R. solanacearum. Mutations in RS01577 and exogenous addition of l-glutamic acid to the GMI1000 wild-type strain had overlapping effects on both the transcriptome and biological functions of R. solanacearum, including on motility, biofilm formation, and virulence. Thus, our results have established a new interaction mechanism between R. solanacearum and host plants that highlights the complexity of the virulence regulation mechanism and may provide new insight into disease control.

Cite

CITATION STYLE

APA

Shen, F., Yin, W., Song, S., Zhang, Z., Ye, P., Zhang, Y., … Deng, Y. (2020). Ralstonia solanacearum promotes pathogenicity by utilizing l-glutamic acid from host plants. Molecular Plant Pathology, 21(8), 1099–1110. https://doi.org/10.1111/mpp.12963

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free