Horizontal branch stars and the ultraviolet universe

1Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Extremely hot horizontal branch (HB) stars and their progeny are widely considered to be responsible for the “ultraviolet upturn” (or UVX) phenomenon observed in elliptical galaxies and the bulges of spirals. Yet, the precise evolutionary channels that lead to the production of these stars remain the source of much debate. In this review, we discuss two key physical ingredients that are required in order for reliable quantitative models of the UV output of stellar populations to be computed, namely, the mass loss rates of red giant branch stars and the helium enrichment “law” at high metallicities. In particular, the recent evidence pointing towards a strong enhancement in the abundances of the α-elements in the Galactic bulge (compared to the disk), and also the available indications of a similar overabundance in (massive) elliptical galaxies, strongly suggest that the helium abundance Y may be higher in ellipticals and bulges than it is in spiral disks by an amount that may reach up to 0.15 at [Fe/H] ∼ +0.5. If so, this would strongly favor the production of hot HB stars at high metallicity in galactic spheroids. We also discuss the existence of mass loss recipes beyond the commonly adopted Reimers “law” that are not only more consistent with the available empirical data, but also much more favorable to the production of extended HB stars at high metallicity. Finally, we discuss new empirical evidence that suggests that different evolutionary channels may be responsible for the production of EHB stars in the field and in clusters.

Cite

CITATION STYLE

APA

Catelan, M. (2009). Horizontal branch stars and the ultraviolet universe. In Astrophysics and Space Science Proceedings (Vol. 0, pp. 175–189). Springer Science and Business Media B.V. https://doi.org/10.1007/978-0-387-87621-4_27

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free