High-efficiency narrowband emission is always in the central role of organic optoelectronic display applications. However, the development of organic afterglow materials with sufficient color purity and high quantum efficiency for hyperafterglow is still great challenging due to the large structural relaxation and severe non-radiative decay of triplet excitons. Here we demonstrate a simple yet efficient strategy to achieve hyperafterglow emission through sensitizing and stabilizing isolated fluorescence chromophores by integrating multi-resonance fluorescence chromophores into afterglow host in a single-component copolymer. Bright multicolor hyperafterglow with maximum photoluminescent efficiencies of 88.9%, minimum full-width at half-maximums (FWHMs) of 38 nm and ultralong lifetimes of 1.64 s under ambient conditions are achieved. With this facilely designed polymer, a large-area hyperafterglow display panel was fabricated. By virtue of narrow emission band and high luminescent efficiency, the hyperafterglow presents a significant technological advance in developing highly efficient organic afterglow materials and extends the domain to new applications.
CITATION STYLE
Zhang, X., Zeng, M., Zhang, Y., Zhang, C., Gao, Z., He, F., … Huang, W. (2023). Multicolor hyperafterglow from isolated fluorescence chromophores. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-36105-y
Mendeley helps you to discover research relevant for your work.