Ammonium inhibition of Arabidopsis root growth can be reversed by potassium and by auxin resistance mutations aux1, axr1, and axr2

105Citations
Citations of this article
111Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A novel effect of ammonium ions on root growth was investigated to understand how environmental signals affect organ development. Ammonium ions (3-12 mM) were found to dramatically inhibit Arabidopsis thaliana seedling root growth in the absence of potassium even if nitrate was present. This inhibition could be reversed by including in the growth medium low levels (20-100 μM) of potassium or alkali ions Rb+ and Cs+ but not alkali ions Na+ and Li+. The protective effect of low concentrations of potassium is not due to an inhibition of ammonium uptake. Ammonium inhibition is reversible, because root growth was restored in ammonium-treated seedlings if they were subsequently transferred to medium containing potassium. It is known that plant hormones can inhibit root growth. We found that mutants of Arabidopsis resistant to high levels of auxin and other hormones (aux1, axr1, and axr2) are also resistant to the ammonium inhibition and produce roots in the absence of potassium. Thus, the mechanisms that mediate the ammonium inhibition of root development are linked to hormone metabolic or signaling pathways. These findings have important implications for understanding how environmental signals, especially mineral nutrients, affect plant root development.

Cite

CITATION STYLE

APA

Cao, Y., Glass, A. D. M., & Crawford, N. M. (1993). Ammonium inhibition of Arabidopsis root growth can be reversed by potassium and by auxin resistance mutations aux1, axr1, and axr2. Plant Physiology, 102(3), 983–989. https://doi.org/10.1104/pp.102.3.983

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free