Properties of acid gels made from sodium caseinate-maltodextrin conjugates prepared by a wet heating method

17Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.

Abstract

Covalent attachment of polysaccharides to proteins (conjugation) via the Maillard reaction has been extensively studied. Conjugation can lead to a significant improvement in protein functionality (e.g., solubility, emulsification, and heat stability). Caseins have previously been successfully conjugated with maltodextrin (Md), but the effect on the detailed acid gelation properties has not been examined. We studied the effect of conjugating sodium caseinate (NaCN) with 3 different sized Md samples via the Maillard reaction in aqueous solutions. The Md samples had dextrose equivalents of 4 to 7, 9 to 12, and 20 to 23 for Md40, Md100, and Md200, respectively. The conjugation reaction was performed in mixtures with 5% NaCN and 5% Md, which were heated at 90°C for 10 h. The degree of conjugation was estimated from the reduction in free amino groups as well as color changes. Sodium dodecyl sulfate-PAGE analysis was performed to confirm conjugation by employing staining of both protein and carbohydrate bands. The molar mass of samples was determined by size-exclusion chromatography coupled with multi-angle laser light scattering. After the conjugation reaction, samples were then gelled by the addition of 0.63% (wt/vol) glucono-δ-lactone at 30°C, such that samples reached pH 4.6 after about 13 h. The rheological properties of samples during acidification was monitored by small-strain dynamic oscillatory rheology. The microstructure of acid gels at pH 4.6 was examined by fluorescence microscopy. Conjugation resulted in a loss of 10.8, 8.8, and 11.9% of the available amino groups in the protein for the NaCN-Md40 conjugates (C40), NaCN-Md100 conjugates (C100), and NaCN-Md100 conjugates (C200), respectively. With a decrease in the size of the type of Md, an increase occurred in the molar mass of the resultant conjugate. The weight average molar masses of NaCN-Md samples were 340, 368, and 425 kDa for the conjugates C40, C100, and C200, respectively. Addition of Md to NaCN dispersion resulted in slightly shorter acid gelation times even without the conjugation reaction. The storage modulus (G′) of acid gels was significantly lower in conjugated samples compared with the corresponding (unreacted) mixtures of Md and NaCN. The sample with the lowest G′ value at pH 4.6 was the C40 conjugate. Fluorescence microscopy showed that gels made by conjugates had slightly larger pores. These results indicate that conjugation of casein modified its acid gelation properties, presumably by the Md polysaccharide moiety hindering aggregation and rearrangements of the casein network.

Cite

CITATION STYLE

APA

Zhang, S., Gong, Y., Khanal, S., Lu, Y., & Lucey, J. A. (2017). Properties of acid gels made from sodium caseinate-maltodextrin conjugates prepared by a wet heating method. Journal of Dairy Science, 100(11), 8744–8753. https://doi.org/10.3168/jds.2017-12602

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free