Mantle versus crustal contributions in crustal-scale magmatic systems (Sesia Magmatic System, northern Italy) from coupling Hf isotopes and numerical modelling

9Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The growth and evolution of crustal-scale magmatic systems play a key role in the generation of the continental crust, the largest eruptions on Earth, and the formation of metal resources vital to our society. However, such systems are rarely exposed on the Earth’s surface, limiting our knowledge about the magmatic processes occurring throughout the crust to indirect geochemical and petrographic data obtained from the shallowest part of the system. The Hf isotopic composition of accessory zircon is widely used to quantify crust-mantle evolution and mass transfers to and within the crust. Here we combine single-grain zircon Hf isotopic analysis by LA-MC-ICP-MS with thermal modelling to one of the best-studied crustal-scale igneous systems (Sesia Magmatic System, northern Italy), to quantify the relative contribution of crustal- and mantle-derived magmas in the entire system. Zircons from the deep gabbroic units define a tight range of εHf (−2.5 ± 1.5). Granites and rhyolites overlap with this range but tail towards significantly more negative values (down to −9.5). This confirms that the entire system consists of hybrid magmas that stem from both differentiation of mantle-derived magmas and melting of the crust. Thermal modelling suggests that crustal melting and assimilation predominantly occurs during emplacement and evolution of magmas in the lower crust, although melt production is heterogeneous within the bodies both spatially and temporally. The spatial and temporal heterogeneity resolved by the thermal model is consistent with the observed Hf isotope variations within and between samples, and in agreement with published bulk-rock Sr–Nd isotopic data. On average, the crustal contribution to the entire system determined by mixing calculations based on Hf isotopic data range between 10 and 40%, even with conservative assumptions, whereas the thermal model suggests that this space- and time-averaged contribution does not exceed 20%. However, spatial and temporal variations in the crustal melt proportion (from 0 up to 80% as observed in the thermal model) may impart significant isotopic variability to different batches of magma observed on the outcrop scale, emphasizing the need to consider a magmatic system as a whole, i.e., by integrating all spatial and temporal scales, to more precisely quantify crustal growth vs. reworking.

Cite

CITATION STYLE

APA

Storck, J. C., Laurent, O., Karakas, O., Wotzlaw, J. F., Galli, A., Sinigoi, S., … Chelle-Michou, C. (2021). Mantle versus crustal contributions in crustal-scale magmatic systems (Sesia Magmatic System, northern Italy) from coupling Hf isotopes and numerical modelling. Contributions to Mineralogy and Petrology, 176(11). https://doi.org/10.1007/s00410-021-01847-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free