Direct-Drive Robots, Theory and Practice

  • Asada H
  • Youcef-Toumi K
  • Koren Y
N/ACitations
Citations of this article
35Readers
Mendeley users who have this article in their library.

Abstract

This book describes the design concept and discusses the control issues related to the performance of a direct-drive robot, specifically, a direct-drive mechanical arm capable of carrying up to 10 kilograms, at 10 meters per second, accelerating at 5 G (a unit of acceleration equal to the acceleration of gravity). These are remarkable achievements compared to current industrial robots that move with speeds on the order of 1 meter per second. Direct-Drive Robot presents the most current research in manipulator design and control, emphasizing the high-performance direct-drive robot arm in which the shafts of articulated joints are directly coupled to the rotors of motors with high torque. It describes fundamental technologies of key components such as motors, amplifiers and sensors, arm linkage design, and control system design, and makes significant contributions in the areas of power efficiency analysis, dynamic mass balancing, and decoupling theory. The book provides a good balance between theory and practice, covering the practical design and implementation of this special robot as well as the theoretical design tools. Contents: Part I: Direct-Drive Technologies. Introduction. Components. Part II: Arm Design Theory. Power Efficiency. Arm Design for Simplified Dynamics. Actuator Relocation. Design of Decoupled Arm Structures. Part III: Development of the MIT Arm. Mechanisms. Control Systems. Part IV: Selected Papers on Direct-Drive Robot Design and Control.

Cite

CITATION STYLE

APA

Asada, H., Youcef-Toumi, K., & Koren, Y. (1989). Direct-Drive Robots, Theory and Practice. Journal of Dynamic Systems, Measurement, and Control, 111(1), 119–120. https://doi.org/10.1115/1.3153012

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free