The SCUBA-2 Cosmology Legacy Survey: The submillimetre properties of Lyman-break galaxies at z = 3-5

45Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We present detections at 850 μm of the Lyman-break galaxy (LBG) population at z ≈ 3, 4, and 5 using data from the Submillimetre Common User Bolometer Array 2 Cosmology Legacy Survey in the United Kingdom Infrared Deep Sky Survey 'Ultra Deep Survey' field. We employ stacking to probe beneath the survey limit, measuring the average 850 μm flux density of LBGs at z ≈ 3, 4, and 5 with typical ultraviolet luminosities of L1700 ≈ 1029 erg s-1 Hz-1. We measure 850 μm flux densities of (0.25 ± 0.03), (0.41 ± 0.06), and (0.88 ± 0.23) mJy, respectively, finding that they contribute at most 20 per cent to the cosmic far-infrared (IR) background at 850 μm. Fitting an appropriate range of spectral energy distributions to the z~3, 4, and 5 LBG stacked 24-850 μm fluxes, we derive IR luminosities of L8-1000μm ≈ 3.2, 5.5, and 11.0 × 1011 L⊙ [and star formation rates (SFRs) of ≈50-200M⊙ yr-1], respectively.We find that the evolution in the IR luminosity density of LBGs is broadly consistent with model predictions for the expected contribution of luminous-to-ultraluminous IR galaxies at these epochs.We observe a positive correlation between stellar mass and IR luminosity and confirm that, for a fixed mass, the reddest LBGs (UV slope β →0) are redder due to dust extinction, with SFR(IR)/SFR(UV) increasing by about an order of magnitude over -2 < β < 0 with SFR(IR)/SFR(UV) ~20 for the reddest LBGs. Furthermore, the most massive LBGs tend to have higher obscured-to-unobscured ratios, hinting at a variation in the obscuration properties across the mass range.

Cite

CITATION STYLE

APA

Coppin, K. E. K., Geach, J. E., Almaini, O., Arumugam, V., Dunlop, J. S., Hartley, W. G., … van der Werf, P. P. (2015). The SCUBA-2 Cosmology Legacy Survey: The submillimetre properties of Lyman-break galaxies at z = 3-5. Monthly Notices of the Royal Astronomical Society, 446(2), 1293–1304. https://doi.org/10.1093/mnras/stu2185

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free