An in situ neutron diffraction experiment during austempering of low-alloyed transformation-induced plasticity steel, Fe-1.48Si-1.52Mn-0.15C, in wt pct was conducted. In this study, time-of-flight neutron diffractometer with a large detector coverage, iMATERIA at J-PARC MLF, was employed. The phase fraction and carbon concentration in austenite could be quantitatively determined with a time resolution 1 minute although considerable textures existed for both ferrite and austenite. The carbon concentration in austenite during austempering was found to be inhomogeneous, resulting in a bimodal concentration distribution. The low-carbon region was consumed by bainite transformation whereas the high-carbon austenite slightly increased and even survived the final cooling to room temperature, forming a retained austenite. The rate of bainite transformation was affected by the state prior to the start of austempering. Consequently, different morphological features of the retained austenite were formed. More block-shaped austenite was observed in the case of slower bainite transformation, and it was determined that film-shaped austenite could also exist. The average carbon concentration was similar to that of high-carbon austenite during austempering. Hence, the film and block shapes of the retained austenite do not necessarily reflect the difference in carbon concentration.
CITATION STYLE
Onuki, Y., Hirano, T., Hoshikawa, A., Sato, S., & Tomida, T. (2019). In Situ Observation of Bainite Transformation and Simultaneous Carbon Enrichment in Austenite in Low-Alloyed TRIP Steel Using Time-of-Flight Neutron Diffraction Techniques. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 50(11), 4977–4986. https://doi.org/10.1007/s11661-019-05415-6
Mendeley helps you to discover research relevant for your work.