Airborne particulates (PM2.5 and TSP) were collected from outdoor and indoor areas at urban (Haizhu District) and suburban (Huadu District) sites from 2019 to 2020 in Guangzhou. Three nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) in the airborne particulates were identified by a gas chromatograph equipped with a triple-quadrupole mass spectrometer. In the Haizhu District and Huadu District, the nitro-PAH concentrations in PM2.5 and TSP did not show a significant decrease from winter to summer. From 2019 to 2020, the difference in the average concentration of nitro-PAHs in PM2.5 and TSP in Guangzhou was relatively low and had no statistical significance. The diagnostic ratios of 2-nitrofluorene (2-NF)/1-nitropyrene (1-NP) in TSP are less than five, while for 2-NF/1-NP in outdoor PM2.5 in the summer of 2019 and 2020 are more than five, which indicates that nitro-PAHs in the atmospheric PM2.5 in Guangzhou during summer mainly originated from the secondary formation of atmospheric photochemical reactions between parent PAHs and oxidants (·OH, NO3, and O3). 9-Nitroanthracene (9-NT) made the most significant contribution to the total nitro-PAH concentration. The incremental lifetime cancer risks (ILCRs) of nitro-PAHs in PM2.5 and TSP by inhalation exposure indicated low potential health risks in the urban-suburban of Guangzhou.
CITATION STYLE
Gao, P., Deng, F., Chen, W. S., Zhong, Y. J., Cai, X. L., Ma, W. M., … Feng, S. R. (2022). Health Risk Assessment of Inhalation Exposure to Airborne Particle-Bound Nitrated Polycyclic Aromatic Hydrocarbons in Urban and Suburban Areas of South China. International Journal of Environmental Research and Public Health, 19(23). https://doi.org/10.3390/ijerph192315536
Mendeley helps you to discover research relevant for your work.