In present 4G the enormously growing of cellular user and the shortage of bandwidth which results in difficulty to provide a high data rate to each end user. To achieve wider bandwidth millimeter wave technology is considered to solve the problem of bandwidth shortage. This paper presents a 4x1 element circular phase array of inset fed rectangular patch antenna operating in the millimeter wave band (24.81GHz 33GHz). To achieve large impedance bandwidth the array is designed with edge coupled parasitic patch arrangement which provides dual resonance. The designed array used the ring-shaped sequential rotation feeding line to reduce the unwanted side lobe radiation. The design antenna array achieved good return loss – 10dB ≤ S11 ≤ – 18.64dB and maintaining 26% (24.81GHz 33GHz) bandwidth. The antenna array has achieved good return loss S11, -18.64dB at 29.09GHz and VSWR ≤ 1.85 (24.81GHz-33GHz). In millimeter wave wireless communication require high gain antenna to overcome the problem of path loss. The designed array has achieved 10.14dB gain. So the designed will be suitable for the future millimeter-wave wireless communication system.
CITATION STYLE
Shah, Md. F., & Singh, A. D. (2020). Design and Analysis of Microstrip Patch Antenna Arrays for Millimeter Wave Wireless Communication. International Journal of Engineering and Advanced Technology, 9(3), 281–286. https://doi.org/10.35940/ijeat.c4759.029320
Mendeley helps you to discover research relevant for your work.