Mercaptoethylguanidine and guanidine inhibitors of nitric-oxide synthase react with peroxynitrite and protect against peroxynitrite-induced oxidative damage

158Citations
Citations of this article
34Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Nitric oxide (NO) produced by the inducible nitric-oxide synthase (iNOS) is responsible for some of the pathophysiological alterations during inflammation. Part of NO-related cytotoxicity is mediated by peroxynitrite, an oxidant species produced from NO and superoxide. Aminoguanidine and mercaptoethylguanidine (MEG) are inhibitors of iNOS and have anti- inflammatory properties. Here we demonstrate that MEG and related compounds are scavengers of peroxynitrite. MEG caused a dose-dependent inhibition of the peroxynitrite-induced oxidation of cytochrome c 2+, hydroxylation of benzoate, and nitration of 4-hydroxyphenylacetic acid. MEG reacts with peroxynitrite with a second-order rate constant of 1900 ± 64 M -1 s -1 at 37 °C. In cultured macrophages, MEG reduced the suppression of mitochondrial respiration and DNA single strand breakage in response to peroxynitrite. MEG also reduced the degree of vascular hyporeactivity in rat thoracic aortic rings exposed to peroxynitrite. The free thiol plays an important role in the scavenging effect of MEG. Aminoguanidine neither affected the oxidation of cytochrome c 2+ nor reacted with ground state peroxynitrite, but inhibited the peroxynitrite-induced benzoate hydroxylation and 4-hydroxyphenylacetic acid nitration, indicating that it reacts with activated peroxynitrous acid or nitrogen dioxide. Compounds that act both as iNOS inhibitors and peroxynitrite scavengers may be useful anti-inflammatory agents.

Cite

CITATION STYLE

APA

Szabó, C., Ferrer-Sueta, G., Zingarelli, B., Southan, G. J., Salzman, A. L., & Radi, R. (1997). Mercaptoethylguanidine and guanidine inhibitors of nitric-oxide synthase react with peroxynitrite and protect against peroxynitrite-induced oxidative damage. Journal of Biological Chemistry, 272(14), 9030–9036. https://doi.org/10.1074/jbc.272.14.9030

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free