Purpose: To investigate the effect of curcumin on spinal cord injury (SCI) in a rat model. Methods: SCI was induced in the rats using mid thoracic spinal cord compression, after which curcumin was injected intraperitoneally. Western blotting was used for assay of expressions of apoptotic proteins, viz, IL-1β, NF-κB p65, TLR4, TNF-α, LC3, Bax and Bcl-2. Malondialdehyde (MDA) and myeloperoxidase were measured using standard methods. Neuronal loss in spinal cord tissues was determined with TUNEL staining and NeuN labelling. Results: Curcumin treatment significantly (p < 0.05) suppressed SCI-mediated upregulation of myeloperoxidase activity and increase in MDA level in rat spinal cord. The reduction of glutathione (GSH) and superoxide dismutase (SOD) activities in the spinal cord of SCI rats were suppressed by curcumin treatment. Curcumin treatment also led to a significant (p < 0.02) increase in the proportion of NeuN positive cells and marked reduction in TUNEL positive cells, but it decreased caspase-3 in the spinal cord tissues of SCI rats. Moreover, curcumin reversed the effect of SCI on protein expressions of Bax and Bcl 2 in a dose-based manner. There was marked curcumin-induced decline in CD11b and GFAP levels in the spinal cord tissues of the SCI rats. Conclusion: These results demonstrate that curcumin protects rats against SCI via inhibition of oxidative stress-mediated neuronal apoptosis. Therefore, curcumin may be useful for the development of an effective treatment for spinal cord injury.
CITATION STYLE
Xiao, W., Chen, X., Wang, Y., Chang, J., Zhao, Z., & Pan, G. (2019). Curcumin exhibits therapeutic effect against spinal cord injury via inhibition of neuronal inflammation and apoptosis. Tropical Journal of Pharmaceutical Research, 18(9), 1927–1933. https://doi.org/10.4314/tjpr.v18i9.21
Mendeley helps you to discover research relevant for your work.