We previously reported that constitutively activated Gαq (Q209L) expression in cardiomyocytes induces apoptosis through opening of the mitochondrial permeability transition pore. We assessed the hypothesis that disturbances in Ca2+ handling linked Gαq activity to apoptosis because resting Ca2+ levels were significantly increased prior to development of apoptosis. Treating cells with EGTA lowered Ca 2+ and blocked both loss of mitochondrial membrane potential (an indicator of permeability transition pore opening) and apoptosis (assessed by DNA fragmentation). When cytosolic Ca2+ and mitochondrial membrane potential were simultaneously measured by confocal microscopy, sarcoplasmic reticulum (SR)-driven slow Ca2+ oscillations (time-to-peak ∼4 s) were observed in Q209L-expressing cells. These oscillations were seen to transition into sustained increases in cytosolic Ca2+, directly paralleled by loss of mitochondrial membrane potential. Ca2+ transients generated by caffeine-induced release of SR Ca2+ were greatly prolonged in Q209L-expressing cells, suggesting a decreased ability to extrude Ca2+. Indeed, the Na+/Ca2+ exchanger (NCX), which removes Ca2+ from the cell, was markedly down-regulated at the mRNA and protein levels. Adenoviral NCX expression normalized cytosolic Ca2+ levels and prevented DNA fragmentation in cells expressing Q209L. Interestingly, constitutively activated Akt, which rescues cells from Q209L-induced apoptosis, prevented the decrease in NCX expression, normalized cytosolic Ca2+ levels and spontaneous Ca2+ oscillations, shortened caffeine-induced Ca2+ transients, and prevented loss of the mitochondrial membrane potential. Our findings demonstrate that NCX down-regulation and consequent increases in cytosolic and SR Ca2+ can lead to Ca2+ overloading-induced loss of mitochondrial membrane potential and suggest that recovery of Ca2+ dysregulation is a target of Akt-mediated protection. © 2005 by The American Society for Biochemistry and Molecular Biology, Inc.
CITATION STYLE
Miyamoto, S., Howes, A. L., Adams, J. W., Dorn, G. W., & Brown, J. H. (2005). Ca2+ Dysregulation Induces Mitochondrial Depolarization and Apoptosis. Journal of Biological Chemistry, 280(46), 38505–38512. https://doi.org/10.1074/jbc.m505223200
Mendeley helps you to discover research relevant for your work.