Solvent extracts of mammalian tissues and blood contain a large amount of co-extracted matrix components, in particular lipids, which can adversely affect instrumental analysis. Clean-up typically degrades non-persistent chemicals. Alternatively, passive sampling with the polymer polydimethylsiloxane (PDMS) has been used for a comprehensive extraction from tissue without altering the mixture composition. Despite a smaller fraction of matrix being co-extracted by PDMS than by solvent extraction, direct analysis of PDMS extracts was only possible with direct sample introduction (DSI) GC-MS/MS, which prevented co-extracted matrix components entering the system. Limits of quantitation (LOQ) ranged from 4 to 20 pg μL−1 ethyl acetate (PDMS extract) for pesticides and persistent organic pollutants (POPs). The group of organophosphorus flame retardants showed higher LOQs up to 107 pg μL−1 due to sorption to active sites at the injection system. Intraday precision ranged between 1 and 10%, while the range of interday precision was between 1 and 18% depending on the analyte. The method was developed using pork liver, brain, and fat as well as blood and was then applied to analyze human post-mortem tissues where polychlorinated biphenyls (PCBs) as well as dichlorodiphenyltrichloroethane (DDT) and DDT metabolites were detected. [Figure not available: see fulltext.].
CITATION STYLE
Baumer, A., Escher, B. I., Landmann, J., & Ulrich, N. (2020). Direct sample introduction GC-MS/MS for quantification of organic chemicals in mammalian tissues and blood extracted with polymers without clean-up. Analytical and Bioanalytical Chemistry, 412(26), 7295–7305. https://doi.org/10.1007/s00216-020-02864-6
Mendeley helps you to discover research relevant for your work.