Implementasi Algoritma K-Nearest Neighbor Untuk Mengklasifikasi Masa Studi Mahasiswa Informatika Universitas Tanjungpura

  • Steven S
  • Putra Negara A
  • Yulianti Y
N/ACitations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

Setiap perguruan tinggi memiliki waktu maksimal yang diberikan kepada mahasiswa dalam menyelesaikan studinya, jika mahasiswa tersebut sudah melewati batas waktu yang telah ditentukan maka mahasiswa tersebut akan dikeluarkan dari perguruan tinggi. Dengan memanfaatkan data akademik mahasiswa yang tersimpan dalam database perguruan tinggi, maka data akademik mahasiswa dapat digunakan untuk mengklasifikasi masa studi mahasiswa. Tujuan penelitian ini adalah untuk mengklasifikasi masa studi mahasiswa serta mengetahui performa algoritma yang digunakan dalam proses klasifikasi. Algoritma yang digunakan untuk penelitian ini adalah K-Nearest Neighbor dan Naive Bayes. Pada penelitian ini juga, algoritma klasifikasi akan ditambahkan Feature Selection Information Gain untuk melihat pengaruh akurasi pada algoritma. Data akademik akan diklasifikasikan kedalam 2 kelas, yaitu kelas lulus tepat waktu dan lulus tidak tepat waktu. Hasil evaluasi menunjukkan bahwa algoritma K-Nearest Neighbor dengan menambahkan Feature Selection Information Gain memberikan hasil performa klasifikasi yang paling baik dengan nilai akurasi sebesar 70.41% dan f1-score sebesar 80.68% dengan nilai k (jarak antar data)=17 pada evaluasi nilai akademik 4 semester dan nilai akurasi sebesar 70.14% dan f1-score sebesar 80.68% dengan nilai k (jarak antar data)=21 pada evaluasi nilai akademik 7 semester. Sedangkan dengan menggunakan algoritma Naive Bayes dengan menambahkan Feature Selection Information Gain mendapatkan nilai akurasi sebesar 67.95% dan f1-score sebesar 72.85.% pada evaluasi nilai akademik 4 semester dan nilai akurasi sebesar 69.32% dan f1-score sebesar 73.47% pada evaluasi nilai akademik 7 semester. Penggunaan Feature Selection Information Gain pada algoritma K-Nearest Neighbor memberikan nilai akurasi yang lebih baik dibandingkan algoritma Naive Bayes dengan perbandingan akurasi sebesar 2.46% dan f1-score sebesar 7.83% pada evaluasi nilai akademik 4 semester dan perbandingan akurasi sebesar 0.82% dan f1-score sebesar 7.21% pada evaluasi nilai akademik 7 semester. Setelah didapatkan performa algoritma terbaik yaitu algoritma K-Nearest Neighbor dengan menambahkan Feature Selection Information Gain, maka algoritma tersebut akan digunakan untuk mengklasifikasi masa studi mahasiswa Informatika Universitas Tanjungpura dengan sistem yang dibangun pada penelitian ini.

Cite

CITATION STYLE

APA

Steven, S., Putra Negara, A. B., & Yulianti, Y. (2022). Implementasi Algoritma K-Nearest Neighbor Untuk Mengklasifikasi Masa Studi Mahasiswa Informatika Universitas Tanjungpura. Jurnal Sistem Dan Teknologi Informasi (JustIN), 10(3), 319. https://doi.org/10.26418/justin.v10i3.56724

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free